Abstract
When a cell sustains damage, it liberates cytosolic ATP, which can serve as an injury signal, affecting neighboring cells. This study presents a methodological approach that employs in vitro axotomy and in vivo laser ablation to simulate cellular injury. Specially tailored biosensors are employed to monitor ATP dynamics and calcium transients in injured cells and their surroundings. To simultaneously visualize extracellular and cytosolic ATP, we developed bicistronic constructs featuring GRABATP1.0 and MaLionR biosensors alongside the calcium sensor RCaMP, enabling multiparametric imaging. In addition to transducing primary neuron cultures, we developed another method where we cocultured dorsal root ganglion neurons together with specialized "sniffer" cell lines expressing the bicistronic biosensors. Exploiting these approaches, we successfully demonstrated the release of ATP from the injured neurons and its extracellular diffusion in response to cellular injury in vitro and in vivo. Axotomy triggered intracellular calcium mobilization not only in the injured neuron but also in the intact neighboring cells, providing new insights into ATP's role as an injury signal. The tools developed in this study have demonstrated remarkable efficiency in unraveling the intricacies of ATP-mediated injury signaling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.