Abstract

Different herpesviruses have been associated with respiratory and enteric disease and mortality among seabirds and waterfowl. In 2011, a respiratory disease outbreak affected 58.3% (98/168) of the Magellanic penguins undergoing rehabilitation due to an oil spill off the southern Brazilian coast. Etiology was attributed to a novel herpesvirus identified by histopathology, immunohistochemistry, electron microscopy and molecular studies with partial DNA sequencing. Since migration, rehabilitation and translocation may facilitate the spread of pathogens between populations and trigger the onset of clinical disease in animals with latent infections, investigation of herpesvirus occurrence in asymptomatic seabirds was performed. Samples from free-ranging seabirds were collected in Argentinian Patagonia (Magellanic penguins) and the Abrolhos Archipelago in Brazil (Brown boobies, Masked boobies, Red-billed tropicbirds, White-tailed tropicbirds and South American tern). Furthermore, asymptomatic seabirds housed at the facility where the outbreak occurred were also sampled. In total, 354 samples from eight seabird species were analyzed by PCR for herpesvirus. Four different sequences of herpesviruses were identified, one in Yellow-nosed Albatross, one in Boobies and Tropicbirds and two in Magellanic penguins. Magellanic penguin herpesvirus 1 was identified during the penguin outbreak at the rehabilitation facility in Brazil, while Magellanic penguin herpesvirus 2 was recovered from free-ranging penguins at four reproduction sites in Argentina. Phylogenic analysis of the herpesviruses sequences tentatively identified suggested that the one found in Suliformes and the one associated with the outbreak are related to sequences of viruses that have previously caused seabird die-offs. These findings reinforce the necessity for seabird disease surveillance programs overall, and particularly highlight the importance of quarantine, good hygiene, stress management and pre-release health exams in seabirds undergoing rehabilitation.

Highlights

  • Herpes viruses (HV) are important pathogens that have worldwide distribution and are able to infect a very wide variety of animal species, from mammals, birds, reptiles, amphibians and fishes, to oysters and clams [1]

  • As ours were the first deposited sequences in Genbank of these seabird genuses, we suggest that the genotype identified in boobies could be named as Sulid herpesvirus (SuHV) genbank accession number KP003804; Thalassarchid herpesvirus (ThaHV) genbank accession number KR092313, for the virus found in yellow-nosed albatross, and Magellanic penguin herpesvirus 1 (MagHV-1) genbank accession number KJ720217 and Magellanic penguin herpesvirus 2 (MagHV-2) genbank accession number KR338839 for genotypes identified in Magellanic penguins in Brazil and Argentina, respectively

  • The pattern of lesions found in penguins, including the presence of intranuclear inclusion corpuscles and clusters of syncytial cells with amphophilic core, is consistent with the pattern of disease described for the Iltovirus genus, such as Gallid herpesvirus 1 (GaHV -1) or laryngotracheitis virus of chickens, and Passerid herpesvirus 1 (PaHV-1) or tracheitis-causing virus in Gouldian Finch (Erythrura gouldiae), which was considered in the phylogenetic analysis (Fig 4) [2, 14]

Read more

Summary

Introduction

Herpes viruses (HV) are important pathogens that have worldwide distribution and are able to infect a very wide variety of animal species, from mammals, birds, reptiles, amphibians and fishes, to oysters and clams [1]. Herpesvirus disease in natural hosts is often mild and followed by latent infection; cross-species infection may cause severe and fatal disease [2,3]. Infection with HV has been identified in more than 100 different free-living species. One might assume that natural infections present a low variability, but some HV can infect several avian species and spread within Families and even avian Orders. The Suid herpesvirus 1, for example, causes mild illness in pigs and other mammals yet may cause severe illness and high mortality when experimentally inoculated in chickens and pigeons [3]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call