Abstract
Systemic lupus erythematosus (SLE) is a multigenic disease associated with IgG hypergammaglobulinemia, IgG anti-nuclear antibodies and immune complex (IC)-type glomerulonephritis. In both human and murine SLE, one susceptibility allele has been mapped to the interval linked to the IgG Fc receptor II (FcgammaRII) gene on chromosome 1. In spontaneous SLE models of NZB and (NZB x NZW) F(1) mice, expression of FcgammaRIIB1, which acts as a negative regulator for B cells, was abnormally down-regulated in follicular germinal center B cells from aged mice, compared to findings in non-SLE NZW, while levels in non-germinal center B cells were practically identical. Such strain differences were also evident in young mice upon in vivo stimulation with foreign antigens. In the FcgammaRIIB promoter region, the NZB allele has two deletion sites, including transcription factor-binding sites. Analyses using (NZB x NZW) F(1) x NZW backcross mice showed that this NZB allele was significantly linked to hyper-IgG, irrespective of the MHC haplotype, while high levels of IgG antibodies specific for DNA were regulated by a combinatorial effect of the F(1)-unique MHC haplotype and the NZB FcgammaRIIB allele. Therefore, the FcgammaRIIB promoter polymorphism may possibly predispose to SLE through germinal center B cells abnormally down-regulating FcgammaRIIB1 expression upon autoantigen stimulations and thus escaping negative signals for IgG production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.