Abstract
The cell wall of the yeast Saccharomyces cerevisiae is a tough, rigid structure, which presents a significant barrier to the release of native or recombinant proteins from this biotechnologically important organism. There is hence a need to develop inexpensive and efficient methods of lysing yeast cells in order to release their intracellular contents. To develop such a method, a tightly regulated promoter, pMET3, has been used to control three genes involved in cell wall biogenesis: PDE2, SRB1/PSA1, and PKC1. Two of these regulation cassettes, pMET3-SRB1/PSA1 and pMET3-PKC1, have been integrated at the chromosomal loci of the respective genes in order to overcome problems of plasmid instability. Although repression of PDE2 did not cause cell lysis, cells depleted of Srb1p/Psa1p gradually lost their viability and integrity, releasing about 10% of total protein into the medium. Repression of PKC1 led to extensive cell lysis, accompanied by the release of 45% of cellular protein into the medium. A double mutant, carrying both pMET3-SRB1/PSA1 and pMET3-PKC1 cassettes in place of SRB1/PSA1 and PKC1, was constructed and found to permit the efficient release of both homologous and heterologous proteins. © 1999 John Wiley & Sons, Inc.,
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.