Abstract

Combining two indirect-gap materials-with different electronic and optical gaps-to create a direct gap material represents an ongoing theoretical challenge with potentially rewarding practical implications, such as optoelectronics integration on a single wafer. We provide an unexpected solution to this classic problem, by spatially melding two indirect-gap materials (Si and Ge) into one strongly dipole-allowed direct-gap material. We leverage a combination of genetic algorithms with a pseudopotential Hamiltonian to search through the astronomic number of variants of Si(n)/Ge(m)/…/Si(p)/Ge(q) superstructures grown on (001) Si(1-x)Ge(x). The search reveals a robust configurational motif-SiGe(2)Si(2)Ge(2)SiGe(n) on (001) Si(x)Ge(1-x) substrate (x≤0.4) presenting a direct and dipole-allowed gap resulting from an enhanced Γ-X coupling at the band edges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.