Abstract
BackgroundThe whipworm Trichuris trichiura has been estimated to infect 604 – 795 million people worldwide. The current control strategy against trichuriasis using the benzimidazoles (BZs) albendazole (400 mg) or mebendazole (500 mg) as single-dose treatment is not satisfactory. The occurrence of single nucleotide polymorphisms (SNPs) in codons 167, 198 or 200 of the beta-tubulin gene has been reported to convey BZ-resistance in intestinal nematodes of veterinary importance. It was hypothesised that the low susceptibility of T. trichiura to BZ could be due to a natural occurrence of such SNPs. The aim of this study was to investigate whether these SNPs were present in the beta-tubulin gene of Trichuris spp. from humans and baboons. As a secondary objective, the degree of identity between T. trichiura from humans and Trichuris spp. from baboons was evaluated based on the beta-tubulin gene and the internal transcribed spacer 2 region (ITS2).MethodsNucleotide sequences of the beta-tubulin gene were generated by PCR using degenerate primers, specific primers and DNA from worms and eggs of T. trichiura and worms of Trichuris spp. from baboons. The ITS2 region was amplified using adult Trichuris spp. from baboons. PCR products were sequenced and analysed. The beta-tubulin fragments were studied for SNPs in codons 167, 198 or 200 and the ITS2 amplicons were compared with GenBank records of T. trichiura.ResultsNo SNPs in codons 167, 198 or 200 were identified in any of the analysed Trichuris spp. from humans and baboons. Based on the ITS2 region, the similarity between Trichuris spp. from baboons and GenBank records of T. trichiura was found to be 98 – 99%.ConclusionsSingle nucleotide polymorphisms in codon 167, 198 and 200, known to confer BZ-resistance in other nematodes, were absent in the studied material. This study does not provide data that could explain previous reports of poor BZ treatment efficacy in terms of polymorphism in these codons of beta-tubulin. Based on a fragment of the beta-tubulin gene and the ITS2 region sequenced, it was found that T. trichiura from humans and Trichuris spp. isolated from baboons are closely related and may be the same species.
Highlights
Summary
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.