Abstract

BackgroundTransgenerational plasticity provides phenotypic variation that contributes to adaptation. For plants, the timing of seed germination is critical for offspring survival in stressful environments, as germination timing can alter the environmental conditions a seedling experiences. Stored seed transcripts are important determinants of seed germination, but have not previously been linked with transgenerational plasticity of germination behavior. In this study we used RNAseq and growth chamber experiments of the model legume M. trucantula to test whether parental exposure to salinity stress influences the expression of stored seed transcripts and early offspring traits and test for genetic variation.ResultsWe detected genotype-dependent parental environmental effects (transgenerational plasticity) on the expression levels of stored seed transcripts, seed size, and germination behavior of four M. truncatula genotypes. More than 50% of the transcripts detected in the mature, ungerminated seed transcriptome were annotated as regulating seed germination, some of which are involved in abiotic stress response and post-embryonic development. Some genotypes showed increased seed size in response to parental exposure to salinity stress, but no parental environmental influence on germination timing. In contrast, other genotypes showed no seed size differences across contrasting parental conditions but displayed transgenerational plasticity for germimation timing, with significantly delayed germination in saline conditions when parental plants were exposed to salinity. In genotypes that show significant transgenerational plastic germination response, we found significant coexpression networks derived from salt responsive transcripts involved in post-transcriptional regulation of the germination pathway. Consistent with the delayed germination response to saline conditions in these genotypes, we found genes associated with dormancy and up-regulation of abscisic acid (ABA).ConclusionsOur results demonstrate genetic variation in transgenerational plasticity within M. truncatula and show that parental exposure to salinity stress influences the expression of stored seed transcripts, seed weight, and germination behavior. Furthermore, we show that the parental environment influences gene expression to modulate biological pathways that are likely responsible for offspring germination responses to salinity stress.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-015-0322-4) contains supplementary material, which is available to authorized users.

Highlights

  • Transgenerational plasticity provides phenotypic variation that contributes to adaptation

  • Stored seed transcripts play a critical role in germination [53] and could potentially mediate transgenerational plastic germination responses; we sequenced the transcriptome of dry, mature seeds originating from parental plants exposed to saline and non-saline conditions

  • Because M. truncatula seeds are self-fertilized, the parental environmental effect incorporates both maternal and paternal effects. We note that these seeds were dry and the transcript accumulation is not influenced by seed germination but rather reflects the deposition of storage transcripts during seed maturation

Read more

Summary

Introduction

Transgenerational plasticity provides phenotypic variation that contributes to adaptation. In this study we used RNAseq and growth chamber experiments of the model legume M. trucantula to test whether parental exposure to salinity stress influences the expression of stored seed transcripts and early offspring traits and test for genetic variation. Transgenerational plasticity occurs when the parental environment influences offspring development and responses to environmental conditions in the absence of genetic changes. There is evidence that transgenerational plasticity is genetically based in field studies examining the influence of the parental environment on offspring response and performance relative to contrasting parental environments [2,6,12,14]. Several studies in plants have reported genotypic differences in adaptive transgenerational plasticity [12,15,16], where genotypes differ in the type of transgenerational mechanisms responsible for the transmission of adaptive environmental cues to their offspring

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call