Abstract

BackgroundToll-like receptors (TLRs) recognize pathogen-associated molecular patterns and their activation leads to the induction of effector genes involving inflammatory cytokines that may have contribute to controlling parasite growth and disease pathogenesis. The current immunogenetic study was designed to analyse the key components of innate immunity, TLRs and TIRAP (Toll-interleukin-1 receptor domain-containing adaptor protein), also known as MAL (MYD88 adaptor-like), in Iranian patients with mild malaria.MethodsThe tlr-4 (D299G and T399I), tlr-9 (T-1486C and T-1237C) and tirap (S180L) genes were assessed in 640 Baluchi individuals (320 Plasmodium falciparum-infected and 320 non-infected, median age of 28 years) from malaria-endemic regions using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods.ResultsCommon tlr-4 SNPs and promoter SNPs of tlr-9 were distributed among P. falciparum-infected and non-infected groups (P > 0.05) that showed no association of these variants with mild clinical manifestation. The comparison of the tirap S180L genotypes between patients with mild malaria and those healthy individuals showed that the frequency of heterozygosity was significantly higher in infected than non-infected individuals (33.8 vs. 25.6; OR, 1.479; 95% CI, 1.051-2.081; P = 0.024). The result also revealed a significant association of tirap S180L (P < 0.05) with development of mild malaria, which is common in Baluchi populations, who are living in malaria hypoendemic region of Iran but not in African populations (0%-6%).ConclusionThese data point towards the need for addressing the exact role of TLRs in contributing to human genetic factors in malaria susceptibility/resistance/severity within different malaria settings in the world.

Highlights

  • Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns and their activation leads to the induction of effector genes involving inflammatory cytokines that may have contribute to controlling parasite growth and disease pathogenesis

  • Based on nested-PCR results, a total of 320 patients with mild malaria were shown to be infected with P. falciparum, as a mono-infection, and none of the healthy control individuals had either P. falciparum or P. vivax infections

  • Tlr-4, tlr-9 and tirap polymorphisms Overall, P. falciparum-infected (n = 320) and noninfected (n = 320) Baluchi individuals were successfully analysed for the tlr-4, tlr-9 and tirap SNPs by PCRRFLP methods and the sequencing data confirmed RFLP results

Read more

Summary

Introduction

Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns and their activation leads to the induction of effector genes involving inflammatory cytokines that may have contribute to controlling parasite growth and disease pathogenesis. The current immunogenetic study was designed to analyse the key components of innate immunity, TLRs and TIRAP (Toll-interleukin-1 receptor domain-containing adaptor protein), known as MAL (MYD88 adaptor-like), in Iranian patients with mild malaria. The activation of TLRs leads to the induction of effector genes involving inflammatory cytokines and, as a result, provides links between innate and adaptive immunity [5]. The adaptor protein TIRAP (Tollinterleukin-1 receptor domain-containing adaptor protein), known as MAL (MYD88 adaptor-like), mediates downstream signaling of TLR-2 and TLR-4 inducing pro-inflammatory responses [13]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.