Abstract

Previous research implicates alterations in oxidative phosphorylation (OXPHOS) in the development of Alzheimer's disease (AD). We sought to test whether genetic variants within OXPHOS genes increase the risk of AD. We first used gene-set enrichment analysis to identify associations, and then applied a previously replicated stroke genetic risk score to determine if OXPHOS genetic overlap exists between stroke and AD. Gene-set enrichment analysis identified associations between variation in OXPHOS genes and AD versus control status (p = 0.012). Conversion from cognitively normal controls to mild cognitive impairment was also associated with the OXPHOS gene-set (p = 0.045). Subset analyses demonstrated association for complex I genes (p < 0.05), but not for complexes II–V. Among neuroimaging measures, hippocampal volume and entorhinal cortex thickness were associated with OXPHOS genes (all p < 0.025). The stroke genetic risk score demonstrated association with clinical status, baseline and longitudinal imaging measures (p < 0.05). OXPHOS genetic variation influences clinical status and neuroimaging intermediates of AD. OXPHOS genetic variants associated with stroke are also linked to AD progression. Further studies are needed to explore functional consequences of these OXPHOS variants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.