Abstract

Indirect ecological effects (IEEs) are widespread and often as strong as the phenotypic effects arising from direct interactions in natural communities. Indirect effects can influence competitive interactions, and are thought to be important selective forces. However, the extent that selection arising from IEEs results in long-term evolutionary change depends on genetic variation underlying the phenotypic response-that is, a genotype-by-IEE interaction. We provide the first data on genetic variation in the response of traits to an IEE, and illustrate how such genetic variation might be detected and analysed. We used a model tri-trophic system to investigate the effect of host plants on two populations of predatory ladybirds through a clonal aphid herbivore. A split-family experimental design allowed us to estimate the effects of aphid host plant on ladybird traits (IEE) and the extent of genetic variation in ladybird predators for response to these effects (genotype-by-indirect environmental effect interaction). We found significant genetic variation in the response of ladybird phenotypes to the indirect effect of host plant of their aphid prey, demonstrating the potential for evolutionary responses to selection arising from the prey host.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.