Abstract

Lack of phosphorus (P) is a major environmental factor affecting rapeseed (Brassica napus. L) root growth and development. For breeding purposes, it is crucial to identify the molecular mechanisms of root system architecture (RSA) traits underlying low P tolerance in rapeseed. The natural variations in the glycine-rich protein gene, BnGRP1, were analyzed in the natural population of 400 rapeseed cultivars under low P stress through genome-wide association study (GWAS) and transcriptome analyses. Based on 11 SNP mutations in BnGRP1 sequence, ten types of haplotypes (Hap) were formed. Compared with the other types, the cultivar of BnGRP1Hap1 type in the panel demonstrated the longest root length and heaviest root weight. BnGRP1Hap1 overexpression in rapeseed depicted the ability to enhance its resistance in response to low P tolerance. CRISPR/Cas9-derived BnGRP1Hap4 knockout mutations in rapeseed can lead to sensitivity to low P stress. Furthermore, BnGRP1Hap1 influences the expression of phosphate transporter 1 (PHT1) genes associated with P absorption. Overall, the findings of this study highlight new mechanisms of GRP1 genes in enhancing low P tolerance in rapeseed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call