Abstract

Human respiratory syncytial virus (HRSV) outranks other viral agents as the cause of respiratory tract diseases in children worldwide. Molecular epidemiological study of the virus provides useful information for the development of globally effective vaccine. We investigated the circulating pattern and genetic variation in the attachment glycoprotein genes of HRSV in Beijing during 5 consecutive seasons from 2007 to 2012. Out of 19,942 tested specimens, 3,160 (15.8%) were HRSV antigen-positive. The incidence of HRSV infection in males was significantly higher than in females. Of the total 723 (23.1%) randomly selected HRSV antigen-positive samples, 462 (63.9%) and 239 (33.1%) samples were identified as subgroup A and B, respectively. Subgroups A and B co-circulated in the 5 consecutive HRSV seasons, which showed a shifting mixed pattern of subgroup dominance. Complete G gene sequences were obtained from 190 HRSV-A and 72 HRSV-B by PCR for phylogenetic analysis. Although 4 new genotypes, NA3 and NA4 for HRSV-A and BA-C and CB1 for HRSV-B, were identified here, they were not predominant; NA1 and BA9 were the prevailing HRSV-A and -B genotypes, respectively. We provide the first report of a 9 consecutive nucleotide insertion in 3 CB1 genotype strains. One Beijing strain of ON1 genotype with a 72 nucleotide insertion was found among samples collected in February 2012. The reversion of codon states in glycosylation sites to previous ones were found from HRSV strains in this study, suggesting an immune-escape strategy of this important virus.

Highlights

  • Human respiratory syncytial virus (HRSV) is the most important viral agent of acute respiratory infections (ARI) in infants and young children [1] and vulnerable adults [2,3]

  • Combining two other Beijing studies [40,41] with this study, a shifting mixed pattern of subgroup dominance was observed in Beijing during 12 HRSV seasons, namely, BAAABAAABBAA, where A and B represent HRSV-A and -B dominance, Figure 4

  • Most studies have revealed that viruses of both subgroups cocirculated during each HRSV season, but the shifting pattern of predominant subgroup varied [28,39,42,43]

Read more

Summary

Introduction

Human respiratory syncytial virus (HRSV) is the most important viral agent of acute respiratory infections (ARI) in infants and young children [1] and vulnerable adults [2,3]. The G protein of HRSV is a type ii transmembrane glycoprotein containing cytoplasmic domain, transmembrane domain and ectodomian [9]. It varies in length from 282 to 321 amino acids [10,11,12,13]. The ectodomain of the G protein consists of two mucin-like highly variable regions, HVR1 and HVR2, separated by a 13 amino acid length domain that is highly conserved in almost all wild-type isolates [10]. Researches on HRSV evolution concentrate mainly on this domain in that the G protein is capable of stimulating neutralizing antibodies and is highly variable in antigenicity as well as genetics [18]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.