Abstract

AbstractAcoustic time of flight and drill resistance (surrogates for wood stiffness and density, respectively) were measured on 11,097 standing trees from 269 pollen-mix families of loblolly pine (Pinus taeda L.) in 6- to 9-year-old progeny tests at eight sites across the southeastern United States. Specific gravity was measured on two test sites. The phenotypic correlation between specific gravity and drill resistance was moderate (r = 0.68), whereas the genetic correlation was very strong (rg = 0.96). Narrow-sense heritabilities for acoustic time of flight and drill resistance were around 0.35 for individual trees and very strong (0.90) for family means. High genetic correlations (>0.80) between pairs of sites suggested a low genotype-by-environment interaction for both traits. Genetic correlations between wood quality traits and other economic traits (growth and stem straightness) were low except for a moderate correlation between acoustic time of flight and tree slenderness (rg = –0.64). The checklot ranked near the middle for both wood quality traits, implying no inadvertent selection occurred in this population that has been selected intensively for volume productivity. This study is the first to apply these tools in a large breeding program, and results suggest they are effective for selecting genotypes for wood quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.