Abstract

In the face of water stress, plants evolved with different abilities to limit the decrease in leaf water potential, notably in the daytime (ΨM). So-called isohydric species efficiently maintain high ΨM, whereas anisohydric species cannot prevent ΨM from dropping as soil water deficit develops. The genetic and physiological origins of these differences in (an)isohydric behaviours remain to be clarified. This is of particular interest within species such as Vitis vinifera L. where continuous variation in the level of isohydry has been observed among cultivars. With this objective, a 2 year experiment was conducted on the pseudo-F1 progeny from a cross between the two widespread cultivars Syrah and Grenache using a phenotyping platform coupled to a controlled-environment chamber. Potted plants of all the progeny were analysed for ΨM, transpiration rate, and soil-to-leaf hydraulic conductance, under both well-watered and water deficit conditions. A high genetic variability was found for all the above traits. Four quantitative trait loci (QTLs) were detected for ΨM under water deficit conditions, and 28 other QTLs were detected for the different traits in either condition. Genetic variation in ΨM maintenance under water deficit weakly correlated with drought-induced reduction in transpiration rate in the progeny, and QTLs for both traits did not completely co-localize. This indicates that genetic variation in the control of ΨM under water deficit was not due simply to variation in transpiration sensitivity to soil drying. Possible origins of the diversity in (an)isohydric behaviours in grapevine are discussed on the basis of concurrent variations in soil-to-leaf hydraulic conductance and stomatal control of transpiration.

Highlights

  • Soil water deficit (WD) represents the main environmental constraint for growth in grapevine (Vitis vinifera L.) and grape production under Mediterranean conditions (Chaves et al, 2010)

  • Specific transpiration rate (TrS) and specific hydraulic conductance (KS) were slightly but significantly higher in 2013 compared with 2012. In spite of this difference, reduction induced by WD compared with WW conditions was of similar magnitude between years for mean KS, decreasing down to 43%, and mean TrS, which decreased down to 55% (Table 1, Fig.2)

  • The genetic analysis of water relations in the Syrah×Grenache progeny revealed that reduction in the transpiration rate induced by soil drying was not the only factor to be considered for the maintenance of leaf water potential in the daytime

Read more

Summary

Introduction

Soil water deficit (WD) represents the main environmental constraint for growth in grapevine (Vitis vinifera L.) and grape production under Mediterranean conditions (Chaves et al, 2010). When combined with high evaporative demand, soil drying may result in a dramatic decrease in water potential in plant tissues. As a result, contrasting controls of leaf water potential have been observed across species when submitted to similar soil WD conditions (Tardieu and Simonneau, 1998).

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call