Abstract

The genetic structure of Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) in two adjacent sites in the Colorado Front Range was examined using allozyme data from 21 loci in spruce and 18 loci in fir. The genetic diversity measures of alleles per locus, percent loci polymorphic, and mean heterozygosity did not differ significantly between or within species. However, the observed heterozygosity (0.126 spruce, 0.081 fir) values suggest that Engelmann spruce is more genetically variable than subalpine fir. Mean inbreeding coefficients were twice as high in fir as in spruce (FIS = 0.154 spruce, 0.341 fir). There were significant differences in allele frequencies in both species between and within sites, and among age-classes, with spatial differences greater than temporal differences. F-statistics showed greater genetic differentiation within (FST = 2.3–2.6% spruce, 2.0–2.8% fir) than between sites (FST = 1.7% spruce, 1.3% fir). Both species had higher FST and genetic distance values, yet lower FIS values, for spatial subdivisions within rather than between sites. This pattern suggests that the size of a spatial subdivision, where maximum gene flow is 54 m, approximates the size of the largest panmictic unit. In contrast with studies on other conifers, these results suggest that factors such as differential selection pressures, seed dispersal patterns, and clumped spatial distribution have resulted in genetic differentiation at the microhabitat level in Engelmann spruce and subalpine fir.Key words: genetic variation, genetic structure, allozymes, Engelmann spruce, subalpine fir, microgeographic differentiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call