Abstract

The study of genetic variation in taste produces parallels between mice and men. In mice, genetic variation across strains has been documented with psychophysical and anatomical measures as well as with recordings from whole nerves. In humans, the variation has been documented with psychophysical and anatomical measures. Whole-nerve recordings from animals and psychophysical ratings of perceived intensities from human subjects have a similar logical limitation: absolute comparisons across individuals require a standard stimulus that can be assumed equally intense to all. Comparisons across whole-nerve recordings are aided by single-fiber recordings. Comparisons across psychophysical ratings of perceived intensity have been aided by recent advances in methodology; these advances now reveal that the magnitude of genetic variation in human subjects is larger than previously suspected. In females, hormones further contribute to variation in taste. There is evidence that the ability to taste (particularly bitter) cycles with hormones in women of child-bearing age, rises to a maximum early in pregnancy and declines after menopause. Taste affects food preferences, which in turn affect dietary behavior and thus disease risks. Valid assessment of taste variation now permits measurement of the impact of taste variation on health. Advances in psychophysical methodology were essential to understanding genetic variation in taste. In turn, the association of perceived taste intensities with tongue anatomy now provides a new tool for psychophysics. The ability of a psychophysical scale to provide across-subject comparisons can be assessed through its ability to show the fungiform papillae density-taste association.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call