Abstract

Plants exposed to environmental contaminants often synthesize anthocyanins (ATHs) as an approach to safeguard themselves from adverse impact. However, the overload of ATHs in plant cells can threaten their growth and development through proteins oxidization and intercalating with DNAs inside cells. In the present study, a microcosm hydroponic experiment was conducted using rice seedlings to investigate the molecular signaling pathways involved in regulating and controlling ATHs synthesis and transport exposed to thiocyanate (SCN−). Our results indicated that SCN− exposure significantly (p < 0.05) increased the expression of ATHs synthesis related genes (i.e., PAL, CHS, ANS, UFGT genes) in rice tissues, altered the activities of these ATHs synthesis related enzymes, and consequently elevated the ATHs content. However, SCN− exposure significantly decreased the expression of ATHs transport related genes (i.e., GST, ABC, MATE genes) in rice seedlings, suggesting that SCN− exposure have restrained ATHs transport from cytosol to vacuole in cells, eventually posing a significant adverse effect on cells survival. Our findings highlight on one of the plant aspects in managing the toxicity triggered by secondary metabolites under stress conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.