Abstract

AbstractFe and Zn deficiency are widespread worldwide. As wheat is the primary food for the majority of the world people, producing wheat grains with high mineral content can ameliorate the problem of mineral hunger. However, the genetic variation available for breeders is limited. The aim of this study was to assess the genetic variation in grain Fe and Zn contents in 47 synthetic hexaploid wheats and to identify marker loci associated with Fe and Zn contents. We measured the grain Fe and Zn contents using inductively coupled plasma atomic emission spectroscopy and performed genotyping using SSR markers. The results showed considerable genetic variation for these minerals. We identified three lines with high Fe and Zn contents and six quantitative trait loci of which three were associated with Fe content and the other three with Zn content. The minerals showed positive phenotypic and genotypic correlation and high heritability (>60%). The ratio of the σ2g to the σ2g×e was ≥1 for the two mineral contents indicating that breeding for increasing mineral content within the synthetic lines is possible. The synthetic wheat lines identified in this study are valuable genetic resources, and can be utilized for breeding wheat cultivars with high mineral content.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call