Abstract

Penicillium crustosum is an important and panglobal contaminant of lipid- and protein-rich foods and feeds. Although it is infrequent in extremely cold environments, we isolated a high number of P. crustosum strains from Arctic coastal, but particularly, subglacial environments in Svalbard, Norway. P. crustosum is extremely consistent in its phenotypic properties, including morphology, physiology, and secondary metabolite production. However, some Arctic isolates differed from other Arctic and non-Arctic strains in their weak growth on creatine and in the production of the secondary metabolite andrastin A. In this study, we characterized genetic variability of P. crustosum strains originating from different Arctic and non-Arctic environments using amplified fragment length polymorphism (AFLP) and, in addition, M13 minisatellite fingerprinting and partial beta-tubulin gene sequencing. Most of the Arctic strains (85%) showed a relatively low variability and polymorphism level. They produced nine different AFLP genotypes grouped into two clusters in accordance with glacier origin and creatine utilization. The rest of the Arctic isolates and isolates from various non-Arctic environments displayed a much greater degree of genetic variability. It seems that in stressful glacial environment low microbial genetic variation is represented by only a few adapted genotypes that were not recovered from nonpolar environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call