Abstract

BackgroundMalaria is a deadly disease caused by Plasmodium spp. Several blood phenotypes have been associated with malarial resistance, which suggests a genetic component to immune protection.MethodsOne hundred and eighty-seven single nucleotide polymorphisms (SNPs) in 37 candidate genes were genotyped and investigated for associations with clinical malaria in a longitudinal cohort of 349 infants from Manhiça, Mozambique, in a randomized controlled clinical trial (RCT) (AgeMal, NCT00231452). Malaria candidate genes were selected according to involvement in known malarial haemoglobinopathies, immune, and pathogenesis pathways.ResultsStatistically significant evidence was found for the association of TLR4 and related genes with the incidence of clinical malaria (p = 0.0005). These additional genes include ABO, CAT, CD14, CD36, CR1, G6PD, GCLM, HP, IFNG, IFNGR1, IL13, IL1A, IL1B, IL4R, IL4, IL6, IL13, MBL, MNSOD, and TLR2. Of specific interest, the previously identified TLR4 SNP rs4986790 and the novel finding of TRL4 SNP rs5030719 were associated with primary cases of clinical malaria.ConclusionsThese findings highlight a potential central role of TLR4 in clinical malarial pathogenesis. This supports the current literature and suggests that further research into the role of TLR4, as well as associated genes, in clinical malaria may provide insight into treatment and drug development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.