Abstract

Type 2 diabetes (T2D) is a highly heterogeneous and polygenic disease. To date, genetic causes and underlying mechanisms for T2D remain unclear. SIRT1, one member of highly conserved NAD-dependent class III deacetylases, has been implicated in many human diseases. Accumulating evidence indicates that SIRT1 is involved in insulin resistance and impaired pancreatic β-cell function, the two hallmarks of T2D. Thus, we speculated that altered SIRT1 levels, resulting from the genetic variants within its regulatory region of SIRT1 gene, may contribute to the T2D development. In this study, the SIRT1 gene promoter was genetically analyzed in T2D patients (n = 218) and healthy controls (n = 358). A total of 20 genetic variants, including 7 single-nucleotide polymorphisms (SNPs), were identified. Five heterozygous genetic variants (g.4114-15InsA, g.4801G > A, g.4816G > C, g.4934G > T, and g.4963_64Ins17bp) and one SNP (g.4198A > C (rs35706870)) were identified in T2D patients, but in none of the controls. The frequencies of two SNPs (g.4540A > G (rs3740051) (OR: 1.75, 95% CI: 1.24-2.47, P < 0.001 in dominant genetic model) and g.4821G > T (rs35995735)) (OR: 3.58, 95% CI: 1.94-6.60, P < 0.001 in dominant genetic model) were significantly higher in T2D patients. Further association and haplotype analyses confirmed that these two SNPs were strongly linked, contributing to the T2D (OR: 1.442, 95% CI: 1.080-1.927, P < 0.05). Moreover, most of the genetic variants identified in T2D were disease-specific. Taken together, the genetic variants within SIRT1 gene promoter might contribute to the T2D development by altering SIRT1 levels. Underlying molecular mechanism needs to be further explored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.