Abstract

It is unresolved whether elevated homocysteine in coronary artery disease (CAD) is the cause of arteriosclerosis or its consequence. In contrast, genetic variants of enzymes that metabolize homocysteine cannot be altered by arteriosclerosis. Consequently, their association with CAD would permit to imply causality. We modeled by regression analysis the effect of 11 variants in the methionine cycle upon CAD manifestation in 591 controls and 278 CAD patients. Among the examined variants only the carriership for the c.844ins68 in the cystathionine β-synthase (CBS) gene was associated with a significantly lowered risk of CAD (OR=0.56; 95% CI=0.35–0.90 in the univariable, and OR=0.41, 95% CI=0.19–0.89 for obese people in the multivariable analysis, respectively). Healthy carriers of the c.844ins68 variant exhibited, compared to the wild type controls, significantly higher postload ratios of blood S-adenosylmethionine to S-adenosylhomocysteine (61.4 vs. 54.9, p=0.001) and of plasma total cysteine to homocysteine (8.6 vs. 7.3, p=0.004). The changes in these metabolites are compatible with an improved methylation status and with enhanced activity of homocysteine transsulfuration. In conclusion, the coincidence of clinical and biochemical effects of a common c.844ins68 CBS variant supports the hypothesis that compounds relating to homocysteine metabolism may play role in the development and/or progression of CAD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.