Abstract
ABSTRACT Background and aims Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) of unknown cause. Alterations in one-carbon metabolism have impact in the pathophysiology by genetic susceptibility to MS and increased the risk of MS. The aim of this study was to investigate the contribution of the gene polymorphism on Methylenetetrahydrofolate Reductase (MTHFR), Methionine Synthase Reductase (MTRR), Methionine Synthase (MTR) enzymes and of the essential factors (homocysteine, Hcy; cysteine, Cys; and vitamin B12, VitB12) in folate metabolism. Methods Eligible MS patients (n = 147) and health controls (n = 127) were participated. The gene polymorphisms were analyzed by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) and the levels of plasma Hcy, Cys and VitB12 were measured by Enzyme Linked Immunuabsorbent Assay (ELISA). Results and conclusion Our results showed that the levels of Hcy and VitB12 were lower and the levels of Cys were higher in MS compared to controls. The observation of high Cys values in all 3 gene polymorphisms suggests that the transsulfiration pathway of Hcy is directed towards Cys formation since the methionine synthesis pathway does not work. We could not find any association with all gene polymorphisms with the risk of MS. The T allele of MTHFR C677T and G allele of MTR A2756G are risk factors for serum Cys level on MS. As for MTR A2756G, serum vitB12 was observed in MS patients with G allele.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.