Abstract

Choline is a required nutrient with roles in liver and brain function, lipid metabolism, and fetal development. Recent data suggest that choline requirements may be altered by polymorphisms in the phosphatidylethanolamine N-methyltransferase (PEMT) gene (ie, 5465G→A; rs7946 and −744G→C; rs12325817) and in the methylenetetrahydrofolate dehydrogenase (MTHFD1) gene (ie, 1958G→A; rs2236225). This controlled feeding study, conducted in 2000-2001, examined the effects of the PEMT and MTHFD1 genetic variants on biomarkers of choline metabolism in premenopausal Mexican-American women (N=43) after a 7-week period of folate restriction (135 μg as dietary folate equivalents) and after a 7-week period of folate treatment (400 and 800 μg dietary folate equivalents/day combined). Throughout the 14-week study choline intake remained constant at 349 mg/day. The genotype frequencies of the women were 3GG, 19GA, and 21AA for PEMT G5465A; 9GG, 17GC and 17CC for PEMT G-744C; and 9GG, 21GA and 13AA for MTHFD1 G1958A. During folate restriction, homocysteine was adversely influenced by PEMT 5465AA ( P=0.001 relative to the G allele) and by MTHFD1 1958AA ( P=0.085 relative to 1958GG); whereas the decline in phosphatidylcholine was attenuated by PEMT −744CC ( P=0.017 relative to −744GG). During folate treatment, no effects of the genotypes on the response of the measured variables were detected. These data suggest that polymorphisms in genes relevant to choline metabolism modulate parameters of choline status when folate intake is restricted. Additional studies with larger samples sizes are needed to examine the relationship between these genetic variants and varied choline intake in populations with increased demands for choline (eg, pregnant women).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.