Abstract

Panstrongylus geniculatus has become the most frequently registered vector of Chagas disease in the metropolitan area of Caracas, Venezuela. This triatomine species has invaded urban areas in recent years and has been implicated in multiple oral outbreaks of Chagas disease in the region. The study of genetic variability and spatial structure in P. geniculatus populations can provide information about possible events of domiciliation and aid intervention programs against triatomine species rapidly adapting to urban ecotopes. We sequenced a region of the cytochrome-b gene in 114 specimens of P. geniculatus from the Metropolitan District of Caracas and assessed patterns of gene flow and phylogenetic relationships among these individuals. A total of 29 haplotypes were detected in the two sampled municipalities, Sucre and Libertador. Though high genetic connectivity was observed between the municipalities (FST = 0.10796; Nm = 11.20), subtle genetic structuring was also observed in particular geographic sub regions. Based on neutrality tests and the observed allele-frequency distribution, the Panstrongylus geniculatus population appears to be expanding and adapting to different microhabitats present in the study area. Our findings affirm the capacity of this insect to adapt to different environments and emphasize its principal role in the epidemiology of Chagas disease in northern Venezuela.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.