Abstract
Human cytomegalovirus (HCMV) infection often leads to systemic disease in immunodeficient patients and congenitally infected children. Despite its clinical significance, the exact mechanisms contributing to HCMV pathogenesis and clinical outcomes have yet to be determined. One of such mechanisms involves HCMV-mediated NK cell immune response, which favors viral immune evasion by hindering NK cell-mediated cytolysis. This process appears to be dependent on the extent of HCMV genetic variation as high levels of variability in viral genes involved in immune escape have an impact on viral pathogenesis. However, the link between viral genome variations and their functional effects has so far remained elusive. Thus, here we sought to determine whether inter-host genetic variability of HCMV influences its ability to modulate NK cell responses to infection. For this purpose, five HCMV clinical isolates from a previously characterized cohort of pediatric patients with confirmed HCMV congenital infection were evaluated by next-generation sequencing (NGS) for genetic polymorphisms, phylogenetic relationships, and multiple-strain infection. We report variable levels of genetic characteristics among the selected clinical strains, with moderate variations in genome regions associated with modulation of NK cell functions. Remarkably, we show that different HCMV clinical strains differentially modulate the expression of several ligands for the NK cell-activating receptors NKG2D, DNAM-1/CD226, and NKp30. Specifically, the DNAM-1/CD226 ligand PVR/CD155 appears to be predominantly upregulated by fast-replicating (“aggressive”) HCMV isolates. On the other hand, the NGK2D ligands ULBP2/5/6 are downregulated regardless of the strain used, while other NK cell ligands (i.e., MICA, MICB, ULBP3, Nectin-2/CD112, and B7-H6) are not significantly modulated. Furthermore, we show that IFN-γ; production by NK cells co-cultured with HCMV-infected fibroblasts is directly proportional to the aggressiveness of the HCMV clinical isolates employed. Interestingly, loss of NK cell-modulating genes directed against NK cell ligands appears to be a common feature among the “aggressive” HCMV strains, which also share several gene variants across their genomes. Overall, even though further studies based on a higher number of patients would offer a more definitive scenario, our findings provide novel mechanistic insights into the impact of HCMV genetic variability on NK cell-mediated immune responses.
Highlights
Human cytomegalovirus (HCMV) is a widespread pathogen persisting in over half of the human population [1]
For RT-qPCR, HFF-NK cell cocultures, and FACS experiments, at day 0, HFFs infected with different HCMV clinical isolates were stained intracellularly and analyzed by flow cytometry to measure the percentage of immediate early (IE) IE1/IE2 antigen positive cells (MAB810X; Merck Millipore, Burlington, USA)
We previously demonstrated that HCMV clinical strains from urine samples of congenitally infected patients displayed high levels of phenotypic variability alongside high genetic variation in regions responsible for immunomodulation [42]
Summary
Human cytomegalovirus (HCMV) is a widespread pathogen persisting in over half of the human population [1]. Even though the prevalence of intra-host HCMV diversity has initially been attributed to the early occurrence of de novo mutations [32, 33], recent data suggest that it may be the result of mixed infection with genetically diverse HCMV strains [31, 34] and extensive recombination [30, 34, 35] Many of these genetic alterations may affect cell tropism and evasion from innate and adaptive defenses. All five HCMV clinical isolates were obtained from pediatric patients with confirmed HCMV congenital infection, previously characterized as those displaying a high phenotypic heterogeneity [42] These isolates were analyzed for genetic diversity across the entire HCMV genome by generation sequencing (NGS) to establish a relationship between genetic variability and modulation of NK cell functions. Our work highlights the importance of combining genome sequencing with immunological assays to determine the functional consequences of genetic variations of HCMV clinical isolates
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.