Abstract

The mechanical power imparted to the wings during tethered flight of Drosophila melanogaster is estimated from wing-beat frequency, wing-stroke amplitude and various aspects of wing morphology by applying the steady-state aerodynamics model of insect flight developed by Weis-Fogh (1972, 1973). Wing-beat frequency, the major determinant of power output, is highly correlated with the rate of oxygen consumption. Estimates of power generated during flight should closely reflect rates of ATP production in the flight muscles, since flies do not acquire an oxygen debt or accumulate ATP during flight. In an experiment using 21 chromosome 2 substitution lines, lines were a significant source of variation for all flight parameters measured. Broadsense heritabilities ranged from 0.16 for wing-stroke amplitude to 0.44 for inertial power. The variation among lines is not explained by variation in total body size (i.e., live weight). Line differences in flight parameters are robust with respect to age, ambient temperature and duration of flight. These results indicate that characterization of the power output during tethered flight will provide a sensitive experimental system for detecting the physiological effects of variation in the structure or quantity of the enzymes involved in flight metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.