Abstract

Normal hematopoietic progenitor cells from 129S6/SvEv mice are substantially less sensitive to Merocyanine 540 (MC540)-mediated photodynamic therapy (PDT) than hematopoietic progenitors from sex- and age-matched C57BL/6 mice. When exposed to a combination of MC540 and light commonly used for the extracorporeal purging of hematopoietic stem cells, granulocyte/macrophage progenitors (CFU-GM) from C57BL/6 mice are depleted 7.9-fold whereas CFU-GM from 129S6/SvEv and (C57BL/6 x 129S6/SvEv) F1 mice are depleted 1.4- and 2-fold, respectively. The same rank order of sensitivity is also found with regard to unipotent progenitors of granulocytes and macrophages and with regard to early and late erythroid progenitors. The resistance of hematopoietic progenitors from 129S6/SvEv mice to MC540-PDT appears to be the result of reduced dye binding rather than the result of high levels of intracellular glutathione. These findings have practical implications for the design of preclinical tests of PDT in animal models. They may also provide a useful tool for future investigations into the molecular determinants of sensitivity to MC540-PDT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call