Abstract
Gluconeogenesis and renal glucose excretion in kidneys both play an important role in glucose homeostasis. Sodium-glucose cotransporter (SGLT2), coded by the SLC5A2 gene is responsible for reabsorption up to 99% of the filtered glucose in proximal tubules. SLC5A2 genetic polymorphisms were suggested to influence glucose homeostasis. We investigated if common SLC5A2 rs9934336 polymorphism influences glycemic control and risk for macro or microvascular complications in Slovenian type 2 diabetes (T2D) patients. All 181 clinically well characterized T2D patients were genotyped for SLC5A2 rs9934336 G>A polymorphism. Associations with glycemic control and T2D complications were assessed with nonparametric tests and logistic regression. SLC5A2 rs9934336 was significantly associated with increased fasting blood glucose levels (P<0.001) and HbA1c levels under the dominant genetic model (P=0.030). After adjustment for T2D duration, significantly higher risk for diabetic retinopathy was present in carriers of at least one polymorphic SLC5A2 rs9934336 A allele compared to non-carriers (OR=7.62; 95%CI=1.65-35.28; P=0.009). Our pilot study suggests an important role of SLC5A2 polymorphisms in the physiologic process of glucose reabsorption in kidneys in T2D patients. This is also the first report on the association between SLC5A2 polymorphism and diabetic retinopathy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.