Abstract
In the frame of modern agriculture facing the predicted increase of population and general environmental changes, the securement of high quality food remains a major challenge to deal with. Vegetable crops include a large number of species, characterized by multiple geographical origins, large genetic variability and diverse reproductive features. Due to their nutritional value, they have an important place in human diet. In recent years, many crop genomes have been sequenced permitting the identification of genes and superior alleles associated with desirable traits. Furthermore, innovative biotechnological approaches allow to take a step forward towards the development of new improved cultivars harboring precise genome modifications. Sequence-based knowledge coupled with advanced biotechnologies is supporting the widespread application of new plant breeding techniques to enhance the success in modification and transfer of useful alleles into target varieties. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 system, zinc-finger nucleases, and transcription activator-like effector nucleases represent the main methods available for plant genome engineering through targeted modifications. Such technologies, however, require efficient transformation protocols as well as extensive genomic resources and accurate knowledge before they can be efficiently exploited in practical breeding programs. In this review, we revise the state of the art in relation to availability of such scientific and technological resources in various groups of vegetables, describe genome editing results obtained so far and discuss the implications for future applications.
Highlights
Vegetable crops include a large number of species belonging to various families, characterized by multiple geographical origins, large genetic variability and diverse reproductive features
Vegetables include a broad number of species with different reproductive features and genetic structures, which largely affect the access to and the exploitation of genetic variability as well as the efficiency of breeding efforts
The low efficiency of phenotypic selection, especially for quantitatively inherited agronomic traits, has been overcome by the introduction of molecular marker technologies that have improved the efficiency of selection, allowing the detection of specific regions and/or genes to introgress via MAB programs
Summary
Vegetable crops include a large number of species belonging to various families, characterized by multiple geographical origins, large genetic variability and diverse reproductive features. In particular gene transfer based on cisgenic approaches and next-generation precision genome engineering relying on genome editing technologies, can play a key role in accessing genetic resources and using them in functional studies and streamlined breeding strategies (Cardi, 2016) (Figure 1). Such approaches, require efficient transformation protocols as well as extensive genomic resources and accurate knowledge before they can be efficiently exploited in practical breeding programs. We revise the state of the art in relation to availability of such scientific and technological resources in various groups of vegetables, describe genome editing results obtained so far and discuss the implications for future applications
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.