Abstract

Rhodococcus spp. are a group of non-model gram-positive bacteria with diverse catabolic activities and strong adaptive capabilities, which enable their wide application in whole-cell biocatalysis, environmental bioremediation, and lignocellulosic biomass conversion. Compared with model microorganisms, the engineering of Rhodococcus is challenging because of the lack of universal molecular tools, high genome GC content (61% ~ 71%), and low transformation and recombination efficiencies. Nevertheless, because of the high interest in Rhodococcus species for bioproduction, various genetic elements and engineering tools have been recently developed for Rhodococcus spp., including R. opacus, R. jostii, R. ruber, and R. erythropolis, leading to the expansion of the genetic toolkits for Rhodococcus engineering. In this article, we provide a comprehensive review of the important developed genetic elements for Rhodococcus, including shuttle vectors, promoters, antibiotic markers, ribosome binding sites, and reporter genes. In addition, we also summarize gene transfer techniques and strategies to improve transformation efficiency, as well as random and precise genome editing tools available for Rhodococcus, including transposition, homologous recombination, recombineering, and CRISPR/Cas9. We conclude by discussing future trends in Rhodococcus engineering. We expect that more synthetic and systems biology tools (such as multiplex genome editing, dynamic regulation, and genome-scale metabolic models) will be adapted and optimized for Rhodococcus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call