Abstract
Autosomal recessive primary microcephaly (MCPH) is a rare genetic disorder that leads to reduced cerebral cortex caused by a mutation in corticogenesis. The expression of the Vitamin D receptor (VDR) gene is involved in the proliferation and differentiation of neural stem cells, and VDR polymorphisms have been associated with various neurological disorders. However, their relationship with MCPH has not been explored. This study aimed to investigate the association of VDR polymorphisms with MCPH due to its role in Wnt signaling pathway and its In-silico analysis. Blood samples of 64 MCPH patients and 52 controls were collected to genotype VDR SNPs (TaqI (rs731236), FokI (rs2228570) and BsmI (rs1544410). In-silico tools were also used to assess the effects of exonic SNPs on mRNA and protein structure and pathogenicity of exonic and intronic SNPs. The study found that serum 25-OH vitamin D3 levels were significantly different in MCPH patients and healthy controls (P = 0.000). The genetic analysis showed that VDR polymorphisms of FokI and BsmI were seven times more frequent in MCPH patients than in controls (P < 0.05) and the recessive model for TaqI and dominant model for BsmI polymorphisms were also associated with the pathogenesis of MCPH. In-silico analysis showed that the pathogenicity effects of rs2228570 and rs1544410 are neutral while rs731236 causes a silent mutation which has no effect on VDR protein. VDR polymorphisms of FokI and BsmI are associated with the risk of MCPH. These findings suggest that VDR polymorphisms play a role in MCPH, which could provide important insights for understanding the molecular mechanisms of the disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.