Abstract

How genetic variations among inbred mouse strains translate into differences in atherosclerosis susceptibility is of significant interest for the development of new therapeutic strategies. The objective of the present study was to examine whether genetically controlled arterial wall properties influence atherosclerosis susceptibility in FVB/N (FVB) and C57BL/6 (B6) apolipoprotein E knockout (apoE(-/-)) mouse strains. Common carotid artery segments from B6 apoE(-/-), F1 apoE(-/-), and FVB apoE(-/-) mice were transplanted to hybrid F1 apoE(-/-) mice, which can accept grafts from both parental strains without adaptive immune responses. The mice were fed a high-fat diet, and atherosclerosis was induced in the transplanted artery segments by placement of a perivascular constrictive collar. Artery segments from B6 apoE(-/-) mice developed much larger atherosclerotic lesions than artery segments from FVB or F1 apoE(-/-) mice. No differences in aortic arch atherosclerosis of the recipient mice were observed between groups. Genetically controlled factors acting at the level of the arterial wall are important determinants of atherosclerosis susceptibility in FVB apoE(-/-) and B6 apoE(-/-) mice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.