Abstract

An electrophoretic survey of allozyme variation revealed substantial genetic differentiation within the eastern Australian population ofActinia tenebrosa. This differentiation appears to reflect the effects of both asexual reproduction and limited gene flow among local populations separated by up to 1050 km. Variation was assessed within groups of 27 to 55 adults sampled between September 1985 and December 1988 collected from small areas of shore within each of 24 local populations. All individuals were collected from stable rock platforms, with the exception of Boulder Bay, where some sea anemones were removed from small mobile boulders. High levels of variability were detected for each of seven enzyme-encoding loci. The patterns of genotypic variation detected imply that local populations are maintained by predominantly asexually generated recruitment. Levels of multi-locus genotypic diversity within samples were consistently less than 50% of the level expected for sexual reproduction with free recombination. This was reflected by the detection of relatively low numbers of multi-locus genotypes and significant departures from expectations for single-locus Hardy-Weinberg equilibria within 17 of the 24 local populations. Standardised genetic variances (F ST ), calculated from the genotypes of all individual adults were typically much greater than those expected for marine organisms with widely dispersed larvae. The former values were reduced, but were still extremely large when “clonal” genotype frequencies were substituted into the calculation. These data imply that although widely dispersed larvae may be an important source of initial colonists, levels of gene flow among established local populations are low. Furthermore, cluster analysis revealed a clear subdivision of the population into northern and southern groups. However, this subdivision was largely explained by strong clinal variation at a GPI-encoding locus. For this locus, allele frequencies ranged from fixation of the A allele in samples from the 12 most northern sites to near fixation of the alternative B allele in southern samples. Subdivision of the eastern Australian population is consistent with the predicted off-shore movement of the Eastern Australian Current close to the border between Victoria and New South Wales. However, the split into northern and southern regions, as evidenced by the variation forGpi, could reflect patterns of gene flow and/or other factors such as natural selection or the recent patterns of colonisation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call