Abstract

Genetic diversity and population structure were studied in eight populations of the kestrel Falco tinnunculus to identify the genetic consequences of spatial distribution and to infer the colonization patterns of the Cape Verde archipelago. We studied genetic differentiation and gene flow among seven island populations and one mainland population using nine microsatellite loci. Within the archipelago, differentiation was strong and genetic diversity and heterozygosity were low but variable among populations. Two subspecies F. tinnunculus neglectus on the northwestern islands and F. tinnunculus alexandri on all the other islands were identified as genetically distinct units. F. t. alexandri could be further separated into two groups on eastern and southern islands. Populations are probably founded by birds originating from the mainland. Immigration is more likely to the eastern and southern populations, whereas the northwestern islands with the lowest genetic diversity and highest differentiation are likely to exhibit fewer founding events by immigrants. The number of founding events on each island may depend not only on geographical distance to neighbouring populations, but also on directional immigration due to the northeastern trade winds. This may explain differences in genetic differentiation and diversity between populations and subspecies and may enable allopatric speciation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call