Abstract
BackgroundSeveral studies have reported the strong resistance of Anopheles gambiae s.l. complex species to pyrethroids. The voltage-dependent sodium channel (Vgsc) gene is the main target of pyrethroids and DDT. In Benin, the frequency of the resistant allele (L1014F) of this gene varies along the north-south transect. Monitoring the evolution of resistance is necessary to better appreciate the genetic structure of vector populations in localities subject to the intensive use of chemicals associated with other control initiatives. The purpose of this study was to map the distribution of pyrethroid insecticide resistance alleles of the Kdr gene in malaria vectors in different regions and ecological facies in order to identify the evolutionary forces that might be the basis of anopheline population dynamics.MethodsThe characterization of Anopheles gambiae s.l. populations and resistance mechanisms were performed using adult mosquitoes obtained from larvae collected in the four agroecological zones in southern Benin. Genomic DNA extraction was performed on whole mosquitoes.The extracted genomic DNA from them were used for the molecular identification of species in Anopheles gambiae s.l. complex and the identification of genotypes related to pyrethroid resistance as the Kdr gene amino acid position 1014 in sodium channel. Molecular speciation and genotyping of Kdr resistant alleles (1014) were done using PCR.Genepop software version 4.2 was used to calculate allelic and genotypic frequencies in each agroecological zone. The p value of the allelic frequency was determined using the binomial test function in R version 3.3.3. The Hardy-Weinberg equilibrium was checked for each population with Genetics software version 1.3.8.1. The observed heterozygosity and the expected heterozygosity as well as the fixation index and genetic differentiation index within and between populations were calculated using Genepop software version 4.2.ResultsDuring the study period, Anopheles coluzzii was the major species in all agroecological zones while Anopheles gambiae was scarcely represented. Regardless of the species, resistant homozygote individuals (L1014F/L1014F) were dominant in all agroecological zones, showing a strong selection of the resistant allele (L1014F). All populations showed a deficit of heterozygosity. No genetic differentiation was observed between the different populations of the two species. For Anopheles coluzzii, there was a small differentiation among the populations of the central cotton and bar-lands zones. The genetic differentiation was modest among the population of the fisheries zone (Fst = 0.1295). The genetic differentiation was very high in the population of Anopheles gambiae of the bar-lands zone (Fst = 0.2408).ConclusionThis study revealed that the use of insecticides in Benin for years has altered the genetic structure of Anopheles gambiae s.s. populations in all agroecological zones of southern Benin. It would be desirable to orientate vector control efforts towards the use of insecticides other than pyrethroids and DDT or combinations of insecticides with different modes of action.
Highlights
Several studies have reported the strong resistance of Anopheles gambiae s.l. complex species to pyrethroids
This study revealed that the use of insecticides in Benin for years has altered the genetic structure of Anopheles gambiae s.s. populations in all agroecological zones of southern Benin
To better study the molecular diversity of Anopheles gambiae s.s. species and establish their genetic structure, anopheline populations were defined on the basis of different agroecological zones that take into account pedoclimatic factors and the different cultures practiced [32]
Summary
Several studies have reported the strong resistance of Anopheles gambiae s.l. complex species to pyrethroids. The purpose of this study was to map the distribution of pyrethroid insecticide resistance alleles of the Kdr gene in malaria vectors in different regions and ecological facies in order to identify the evolutionary forces that might be the basis of anopheline population dynamics. Anopheles gambiae s.s., the main malaria vector [3], has two molecular forms (M and S) in sub-Saharan Africa [3,4,5]. The recent work of Coetzee et al [6] suggested these two molecular forms represent distinct species belonging to the Anopheles gambiae complex. They are respectively called Anopheles coluzzii and Anopheles gambiae
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.