Abstract

BackgroundAfrica contains the most genetically divergent group of continental populations and several studies have reported that African populations show a high degree of population stratification. In this regard, it is important to investigate the potential for population genetic structure or stratification in genetic epidemiology studies involving multiple African populations. The presences of genetic sub-structure, if not properly accounted for, have been reported to lead to spurious association between a putative risk allele and a disease. Within the context of the Africa America Diabetes Mellitus (AADM) Study (a genetic epidemiologic study of type 2 diabetes mellitus in West Africa), we have investigated population structure or stratification in four ethnic groups in two countries (Akan and Gaa-Adangbe from Ghana, Yoruba and Igbo from Nigeria) using data from 372 autosomal microsatellite loci typed in 493 unrelated persons (986 chromosomes).ResultsThere was no significant population genetic structure in the overall sample. The smallest probability is associated with an inferred cluster of 1 and little of the posterior probability is associated with a higher number of inferred clusters. The distribution of members of the sample to inferred clusters is consistent with this finding; roughly the same proportion of individuals from each group is assigned to each cluster with little variation between the ethnic groups. Analysis of molecular variance (AMOVA) showed that the between-population component of genetic variance is less than 0.1% in contrast to 99.91% for the within population component. Pair-wise genetic distances between the four ethnic groups were also very similar. Nonetheless, the small between-population genetic variance was sufficient to distinguish the two Ghanaian groups from the two Nigerian groups.ConclusionThere was little evidence for significant population substructure in the four major West African ethnic groups represented in the AADM study sample. Ethnicity apparently did not introduce differential allele frequencies that may affect analysis and interpretation of linkage and association studies. These findings, although not entirely surprising given the geographical proximity of these groups, provide important insights into the genetic relationships between the ethnic groups studied and confirm previous results that showed close genetic relationship between most studied West African groups.

Highlights

  • Africa contains the most genetically divergent group of continental populations and several studies have reported that African populations show a high degree of population stratification

  • We investigated population structure or stratification in four ethnic groups in two countries in West Africa (Akan and Gaa-Adangbe from Ghana, Yoruba and Igbo from Nigeria) using data from 372 autosomal microsatellite loci [see Additional file 1] typed in 493 unrelated persons (986 chromosomes)

  • The proportion of individuals assigned to each cluster is approximately the same with little variation between ethnic groups (Table 2). This symmetry is strongly suggestive of the absence of population structure in the America Diabetes Mellitus (AADM) study sample

Read more

Summary

Introduction

Africa contains the most genetically divergent group of continental populations and several studies have reported that African populations show a high degree of population stratification. In this regard, it is important to investigate the potential for population genetic structure or stratification in genetic epidemiology studies involving multiple African populations. Within the context of the Africa America Diabetes Mellitus (AADM) Study (a genetic epidemiologic study of type 2 diabetes mellitus in West Africa), we have investigated population structure or stratification in four ethnic groups in two countries (Akan and Gaa-Adangbe from Ghana, Yoruba and Igbo from Nigeria) using data from 372 autosomal microsatellite loci typed in 493 unrelated persons (986 chromosomes). Availability of more genetic data from sub Saharan Africa will clearly be useful in our understanding of population structure, demographic history and the efforts to map disease-causing genes

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call