Abstract
Resource sustainability requires a thorough understanding of the influence of forest management programs on the conservation of genetic diversity in tree populations. To observe how differences in forest structure affect the genetic structure of eastern white pine ( Pinus strobus L.), we evaluated six eastern white pine sites across the 234 000 acre (1 acre = 0.4046856 ha) Menominee Indian Reservation in northeastern Wisconsin (45°00′N, 88°45′W). The six sites sampled for nuclear and chloroplast DNA microsatellite markers were of contrasting densities and managed by different management systems: shelterwood, pine release, plantation, and old growth. Three of the sites had natural regeneration, which was also sampled. Mean values of spatial genetic autocorrelation were positive in all mature populations and variable; the strongest spatial structuring of genes occurred in the least disturbed old-growth site (I – E(I) = 0.031). Genetic structuring at the historical old-growth site fit the isolation-by-distance model for a neighborhood size of 130 individuals. Significant inbreeding occurred in five populations, but the seedling or sapling populations as a group (f = 0.088) are significantly less inbred than the local mature populations (f = 0.197). The increase in heterozygosity between generations was attributed to harvesting having reduced the spatial genetic structure of the mature trees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.