ABSTRACT Determining the genetic structure and population dynamics of harvested species are key aspects of effective fisheries management. New Zealand scampi (Metanephrops challengeri) is a species of nethropid lobster that supports a commercial fishery on the continental shelf and slope around New Zealand. To determine the genetic structure and historical population demography of New Zealand scampi, we sequenced a 623 base-pair fragment of the mitochondrial gene cytochrome c oxidase subunit one (CO1) from 321 individuals across six widely separated sites off the coast of mainland New Zealand and the subantarctic Auckland Islands, representing much of the species’ distribution. The Auckland Islands population was found to be genetically distinct from all other sampled populations, potentially resulting from an absence of continuous suitable habitat between the central-eastern South Island and the Auckland Islands. An isolation-by-distance pattern of genetic structure was also detected. With the exception of the Mercury Islands, all sampled populations showed signs of recent population expansion, potentially linked to changes in habitat availability during the glacial-interglacial cycles of the Pleistocene. We recommend that the current NZ scampi management areas and harvesting rates for each remain unchanged.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call