Abstract
Knowledge of spatial patterns of genetic variation within populations of wild relative species has significant implications with respect to sampling strategies for ex situ and in situ conservation. To study spatial genetic structure of wild soybean (Glycine soja Sieb. et Zucc.) at the fine scale, three natural populations in northern China were analyzed using inter-simple sequence repeat (ISSR) fingerprints for estimating kinship coefficients. A regression analysis of kinship coefficients against spatial distances revealed that individuals occurring close together tended to be more genetically related. The Sp statistic further indicated a comparable spatial pattern among the three wild soybean populations with similar Sp values (mean = 0.0734, varied from 0.0645 to 0.0943) detected across the three populations. Genetic patches were on average ca. 20 m in size, and the effective neighborhood sizes varied between 10 and 15 m. The spatial genetic structure evident in the wild soybean populations may be attributed to the restricted seed dispersal and predominant inbreeding mating system of this species. The detection of family structure in the populations of wild soybean has a significant implication for the effective conservation of the important genetic resources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.