Abstract
The objective of this study was to determine the feasibility of genetic selection for health traits in dairy cattle using data recorded in on-farm herd management software programs. Data regarding displaced abomasum (DA), ketosis (KET), mastitis (MAST), lameness (LAME), cystic ovaries (CYST), and metritis (MET) were collected between January 1, 2001 and December 31, 2003 in herds using Dairy Comp 305, DHI-Plus, or PCDART herd management software programs. All herds in this study were either participants in the Alta Genetics (Watertown, WI) Advantage progeny testing program or customers of the Dairy Records Management Systems (Raleigh, NC) processing center. Minimum lactation incidence rates were applied to ensure adequate reporting of these disorders within individual herds. After editing, DA, KET, MAST, LAME, CYST, and MET data from 75,252 (313), 52,898 (250), 105,029 (429), 50,611 (212), 65,080 (340), and 97,318 (418) cows (herds) remained for analysis. Average lactation incidence rates were 0.03, 0.10, 0.20, 0.10, 0.08, and 0.21 for DA, KET, MAST, LAME, CYST, and MET (including retained placenta), respectively. Data for each disorder were analyzed separately using a threshold sire model that included a fixed parity effect and random sire and herd-year-season of calving effects; both first lactation and all lactation analyses were carried out. Heritability estimates from first lactation (all lactation) analyses were 0.18 (0.15) for DA, 0.11 (0.06) for KET, 0.10 (0.09) for MAST, 0.07 (0.06) for LAME, 0.08 (0.05) for CYST, and 0.08 (0.07) for MET. Corresponding heritability estimates for the pooled incidence rate of all diseases between calving and 50 d postpartum were 0.12 and 0.10 for the first and all lactation analyses, respectively. Mean differences in PTA for probability of disease between the 10 best and 10 worst sires were 0.034 for DA, 0.069 for KET, 0.130 for MAST, 0.054 for LAME, 0.039 for CYST, and 0.120 for MET. Based on the results of this study, it appears that genetic selection against common health disorders using data from on-farm recording systems is possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.