Abstract

BackgroundIn polytocous livestock species, litter size and offspring weight act antagonistically; in modern pig breeds, selection for increased litter size has resulted in lower mean birth weights, an increased number of small piglets and an increased number of those affected by varying degrees of intrauterine growth retardation (IUGR). IUGR poses life-long challenges, both mental, with morphological brain changes and altered cognition, and physical, such as immaturity of organs, reduced colostrum intake and weight gain. In pigs, head morphology of newborn piglets is a good phenotypic marker for identifying such compromised piglets. Growth retardation could be considered as a property of the dam, in part due to either uterine capacity or insufficiency. A novel approach to this issue is to consider the proportion of IUGR-affected piglets in a litter as an indirect measure of uterine capacity. However, uterine capacity or sufficiency cannot be equated solely to litter size and thus is a trait difficult to measure on farm.ResultsA total of 21,159 Landrace × Large White or Landrace × White Duroc piglets (born over 52 weeks) with recorded head morphology and birth weights were followed from birth until death or weaning. At the piglet level, the estimated heritability for IUGR (as defined by head morphology) was low at 0.01 ± 0.01. Piglet direct genetic effects of birth weight (h2 = 0.07 ± 0.02) were strongly negatively correlated with head morphology (− 0.93), in that IUGR-affected piglets tended to have lower birth weights. At the sow level, analysis of the proportion of IUGR-affected piglets in a litter gave a heritability of 0.20 ± 0.06, with high and negative genetic correlations of the proportion of IUGR-affected piglets with average offspring birth weight (− 0.90) and with the proportion of piglets surviving until 24 h (− 0.80).ConclusionsThis suggests that the proportion of IUGR-affected piglets in a litter is a suitable indirect measure of uterine capacity for inclusion in breeding programmes that aim at reducing IUGR in piglets and improving piglet survival.

Highlights

  • In polytocous livestock species, litter size and offspring weight act antagonistically; in modern pig breeds, selection for increased litter size has resulted in lower mean birth weights, an increased number of small piglets and an increased number of those affected by varying degrees of intrauterine growth retardation (IUGR)

  • The objective of this study was to determine if the incidence of immature piglets could be reduced by: (1) selection at the piglet level by recording IUGR head morphology of IUGR-affected piglets used as an indirect measure for IUGR; or (2) selection at the sow level based on the proportion of IUGR-affected piglets born in a litter, as a candidate for indirect measurement of uterine insufficiency

  • More piglets were born with a normal HEAD-CLASS score than with an IUGR HEAD score, and IUGR (1)] and birth weight (Ind BWT) ranged from 178 to 2960 g

Read more

Summary

Introduction

Litter size and offspring weight act antagonistically; in modern pig breeds, selection for increased litter size has resulted in lower mean birth weights, an increased number of small piglets and an increased number of those affected by varying degrees of intrauterine growth retardation (IUGR). Intrauterine growth retardation (IUGR) has been associated with impaired foetal and placental growth [15], which can result in lower birth weights and a higher brain to liver weight ratio [16] due to the ‘brainsparing effect’. This is part of a foetal adaptive reaction to placental or nutritional insufficiency [17], which may have permanent effects on the structure, physiology and metabolism of the body [18, 19], intestinal morphology and enzyme secretion [20,21,22]. IUGR poses economic problems for subsequent commercial meat production, such as reduced feed conversion efficiency and a decreased percentage of meat [24] and increased percentage of body fat in the carcass [25]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call