Abstract

Small regulatory RNAs (sRNAs) are versatile regulators that have been shown to be involved in the gene regulation of a growing number of biological pathways in bacteria. While finding the targets of a given sRNA has been the focus of many studies, fewer methods have been described to uncover which, if any, sRNAs regulate a given gene. Here I present two genetic screens that are designed to search for sRNAs regulating a gene of interest. Before the screens are performed, a translational fusion is made between the gene of interest and lacZ, designed so that mostly post-transcriptional effects on the gene's expression can be analyzed. I describe here a simple and rapid way to obtain this fusion, even when the transcriptional start site is unknown, by combining PCR or 5'RACE with recombination in the chromosome of a special strain of Escherichia coli. The first genetic screen uses a genomic multicopy library to find regulator genes that, when overexpressed, affect the expression of the fusion. While this technique is a classical genetic screen, particular attention is paid to how it can be used to specifically find sRNAs. A second screen is described that takes advantage of a specific library of sRNAs of E. coli that provides an easier and more rapid way to look for sRNA regulation. The library is transformed into the fusion containing strain using a serial transformation protocol developed in microtiter plates. The transformants can then be directly assayed for effects on the beta-galactosidase activity of the fusion in liquid, providing a precise and rapid way to evaluate sRNA regulation. Use of one or both of these screens should help uncover new pathways of regulation by sRNAs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call