Abstract
Genetic fuzzy system encompasses genetic algorithm and fuzzy logic. It divulges the advantage of optimization with ease of understanding for classification and regression of energy performance of buildings, transformer, and harmonic current in energy industry. This paper presents development of a new rules induction algorithm namely genetic rules induction fuzzy inference system for classification and regression (GRIFISCnR) that combines genetic algorithm with fuzzy logic to facilitate efficient design of building, transformer and harmonic current filter in energy industry using Pittsburgh approach. GRIFISCnR possesses the rules induction capability over other algorithms for multi-class classification and regression problems without compromising on interpretability and accuracy. It manages to strike a balance between interpretability and accuracy, and yield better accuracy with lesser number of rules. It is easier to interpret and understand fuzzy rules as compared to numerical numbers.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Engineering and Advanced Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.