Abstract
Funding AcknowledgementsType of funding sources: Other. Main funding source(s): Carlos III Health Institute and the European Regional Development Fund Government of Catalonia through the Agency for Management of University and Research Grants Crue-CSIC-Santander FONDO SUPERA COVID-19BackgroundThe disease presentation of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ranges from asymptomatic to fatal. COVID-19 patients with pre-existing coronary artery disease (CAD) risk factors or overt cardiovascular disease are at particular risk of severe disease. We hypothesised that a specific genetic risk score (GRS) based on single nucleotide polymorphisms (SNPs) allele count to score COVID-19 severity might include SNPs counts related to CAD incidence and to thrombosis, inflammation, and viral infectivity determinants involved in the severity of SARS-CoV-2. Such GRS could improve the early risk stratification of COVID-19 patients and optimize treatment strategies.PurposeTo evaluate the capacity of a genetic risk score (GRS) with candidate genes to predict COVID-19 severity.MethodsWe conducted an age- and sex-matched case-control study with 1:2 ratio recruitment involving 2454 patients from Catalan hospitals and primary care. Cases were hospitalized severe (requiring at least oxygen treatment) or fatal COVID-19 patients; and controls were moderate-symptom and asymptomatic patients treated at home. Standard parametric and non-parametric methods, as required, were used to compare patient characteristics by severity. Individual genotypes for 33 CAD, 14 thrombosis, 22 inflammation, 15 viral infectivity SNPs and 2 COVID-19 SNPs already published were tested for association with severity with Cochran-Armitage statistics and p-values corrected for multiple comparisons. GRS was computed as the unweighted count of adverse alleles (0, 1 or 2). The odds ratio of severe COVID-19 was analysed for GRS (and its component SNPs) with logistic regression models adjusted for potential confounding factors. Area under the curve (AUC) improvement and net reclassification index (NRI) for GRS was estimated from a basic model including CAD and COVID-19 severity risk factors. Models’ performance was measured with the Akaike information criterion.ResultsSNPs identifications are not shown to prevent patent conflict. Cases and control characteristics are compared in Table 1. Cases had a more adverse cardiovascular and anthropometric risk profile. After correcting for multiple testing by Benjamini-Hochberg criteria, we observed 13 SNPs to be significantly associated with severity. After excluding the close SNPs in linkage disequilibrium, 7 were retained in the GRS model, which yielded the discrimination and reclassification characteristics described in Table 2.ConclusionA GRS with 7 SNPs related to CAD, thrombosis and inflammation significantly improves the severe COVID-19 risk assessment done with age, sex, comorbidity, and anthropometry alone.CV and anthropometric risk profileOR of COVID-19 severity for a 7-SNP GRS
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.