Abstract

BackgroundA close association between maize roots and Burkholderia cepacia complex (BCC) bacteria has been observed in different locations globally. In this study we investigated by MultiLocus Restriction Typing (MLRT) the genetic diversity and relationships among Burkholderia cenocepacia IIIB and BCC6 populations associated with roots of maize plants cultivated in geographically distant countries (Italy and Mexico), in order to provide new insights into their population structure, evolution and ecology.ResultsThe 31 B. cenocepacia IIIB and 65 BCC6 isolates gave rise to 29 and 39 different restriction types (RTs), respectively. Two pairs of isolates of B. cenocepacia IIIB and BCC6, recovered from both Italian and Mexican maize rhizospheres, were found to share the same RT. The eBURST (Based Upon Related Sequence Types) analysis of MLRT data grouped all the B. cenocepacia IIIB isolates into four clonal complexes, with the RT-4-complex including the 42% of them, while the majority of the BCC6 isolates (94%) were grouped into the RT-104-complex. These two main clonal complexes included RTs shared by both Italian and Mexican maize rhizospheres and a clear relationship between grouping and maize variety was also found. Grouping established by eBURST correlated well with the assessment using unweighted-pair group method with arithmetic mean (UPGMA). The standardized index of association values obtained in both B. cenocepacia IIIB and BCC6 suggests an epidemic population structure in which occasional clones emerge and spread.ConclusionsTaken together our data demonstrate a wide dispersal of certain B. cenocepacia IIIB and BCC6 isolates in Mexican and Italian maize rhizospheres. Despite the clear relationship found between the geographic origin of isolates and grouping, identical RTs and closely related isolates were observed in geographically distant regions. Ecological factors and selective pressure may preferably promote some genotypes within each local microbial population, favouring the spread of a single clone above the rest of the recombinant population.

Highlights

  • A close association between maize roots and Burkholderia cepacia complex (BCC) bacteria has been observed in different locations globally

  • 96 isolates belonging to the species B. cenocepacia IIIB and the BCC6 group, recovered from maize rhizosphere in Italy and Mexico, were characterized by using MultiLocus Restriction Typing (MLRT), in order to investigate the genetic diversity and relationships of bacteria associated with maize cultivated in geographically distant locations

  • Despite the clear relationship found between the geographic origin of isolates and grouping, identical restriction types (RTs) and closely related isolates were observed in geographically distant regions (Mexico and Italy)

Read more

Summary

Introduction

A close association between maize roots and Burkholderia cepacia complex (BCC) bacteria has been observed in different locations globally. In this study we investigated by MultiLocus Restriction Typing (MLRT) the genetic diversity and relationships among Burkholderia cenocepacia IIIB and BCC6 populations associated with roots of maize plants cultivated in geographically distant countries (Italy and Mexico), in order to provide new insights into their population structure, evolution and ecology. The maize rhizosphere is a favourable niche for BCC bacteria, probably due to their ability to metabolise at high rates maize root exudates [8] and has been suggested to represent a natural reservoir of bacterial strains that may exhibit pathogenic traits [9,10,11,12,13]. A close association between maize roots and BCC has been

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call