Abstract
The survey of the relevant literatures shows that there have been many studies for portfolio optimization problems and that the number of studies which have investigated the optimum portfolio using evolutionary computation is quite large. But, almost none of these studies deals with genetic relation algorithm (GRA), where GRA is one of the evolutionary methods with graph structure. This study presents an approach to large-scale portfolio optimization problems using GRA with a new operator, called guided mutation. In order to pick up the most efficient portfolio, GRA considers the correlation coefficient between stock brands as strength, which indicates the relation between nodes in each individual of GRA. Guided mutation generates offspring according to the average value of correlation coefficients in each individual, which means to enhance the exploitation ability of evolution of GRA. A genetic relation algorithm with guided mutation (GRA/G) for the portfolio optimization is proposed in this paper. Genetic network programming (GNP), which was proposed in our previous research, is used to validate the performance of the portfolio generated with GRA/G. The results show that GRA/G approach is successful in portfolio optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.