Abstract
N6-methyladenosine (m6A) has been established as the most prevalent chemical modification in message RNA (mRNA), playing an essential role in determining the fate of RNA molecules. Dysregulation of m6A has been revealed to lead to abnormal physiological conditions and cause various types of human diseases. Recent studies have delineated the genetic regulatory maps for m6A methylation by mapping the quantitative trait loci of m6A (m6A-QTLs), thereby building up the regulatory circuits linking genetic variants, m6A, and human complex traits. Here, we review the recent discoveries concerning the genetic regulatory maps of m6A, describing the methodological and technical details of m6A-QTL identification, and introducing the key findings of the cis- and trans-acting drivers of m6A. We further delve into the tissue- and ethnicity-specificity of m6A-QTL, the association with other molecular phenotypes in light of genetic regulation, the regulators underlying m6A genetics, and importantly, the functional roles of m6A in mediating human complex diseases. Lastly, we discuss potential research avenues that can accelerate the translation of m6A genetics studies toward the development of therapies for human genetic diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.