Abstract

Although transgenic mouse models of Alzheimer's disease (AD) recapitulate amyloid-beta (Abeta)-related pathologies and cognitive impairments, previous studies have mainly evaluated their hippocampus-dependent memory dysfunctions using behavioral tasks such as the water maze and fear conditioning. However, multiple memory systems become impaired in AD as the disease progresses and it is important to test whether other forms of memory are affected in AD models. This study was designed to use conditioned taste aversion (CTA) and contextual fear conditioning paradigms to compare the phenotypes of hippocampus-independent and -dependent memory functions, respectively, in 5XFAD amyloid precursor protein/presenilin-1 transgenic mice that harbor five familial AD mutations. Although both types of memory were significantly impaired in 5XFAD mice, the onset of CTA memory deficits ( approximately 9 months of age) was delayed compared with that of contextual memory deficits ( approximately 6 months of age). Furthermore, 5XFAD mice that were genetically engineered to have reduced levels of beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1) (BACE1(+/-).5XFAD) exhibited improved CTA memory, which was equivalent to the performance of wild-type controls. Importantly, elevated levels of cerebral beta-secretase-cleaved C-terminal fragment (C99) and Abeta peptides in 5XFAD mice were significantly reduced in BACE1(+/-).5XFAD mice. Furthermore, Abeta deposition in the insular cortex and basolateral amygdala, two brain regions that are critically involved in CTA performance, was also reduced in BACE1(+/-).5XFAD compared with 5XFAD mice. Our findings indicate that the CTA paradigm is useful for evaluating a hippocampus-independent form of memory defect in AD model mice, which is sensitive to rescue by partial reductions of the beta-secretase BACE1 and consequently of cerebral Abeta.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.