Abstract

A genetic recurrent fuzzy system which automates the design of recurrent fuzzy networks by a coevolutionary genetic algorithm with divide-and-conquer technique (CGA-DC) is proposed in this paper. To solve temporal problems, the recurrent fuzzy network constructed from a series of recurrent fuzzy if-then rules is adopted. In the CGA-DC, based on the structure of a recurrent fuzzy network, the design problem is divided into the design of individual subrules, including spatial and temporal, and that of the whole network. Then, three populations are created, among which two are created for spatial and temporal subrules searches, and the other for the whole network search. Evolution of the three populations are performed independently and concurrently to achieve a good design performance. To demonstrate the performance of CGA-DC, temporal problems on dynamic plant control and chaotic system processing are simulated. In this way, the efficacy and efficiency of CGA-DC can be evaluated as compared with other genetic-algorithm-based design approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.